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Abstract A colloidal crystal suspended in an electrolyte solution will ordinarily
exchange ions with the surrounding solution and develop a net surface charge density
and a corresponding double layer. The interfacial tension of the charged surface has
contributions arising from: (a) background interfacial tension of the uncharged surface,
(b) the entropy associated with the adsorption of ions on the surface, and (c) the
polarizing effect of the electrostatic field within the double layer. The adsorption and
polarization effects make negative contributions to the surface free energy and serve
to reduce the interfacial tension below the value to be expected for the uncharged
surface. The diminished interfacial tension leads to a reduced capillary length scale.
According to the Ostwald ripening theory of particle coarsening, the reduced capillary
length will cause the solute supersaturation to decay more rapidly and the colloidal
particles to be smaller in size and greater in number than in the absence of the double
layer. Although the length scale for coarsening should be little affected in the case of
inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions
of protein crystals, such as apoferritin, catalase, and thaumatin.
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1 Introduction

A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions
with the solution and develop a net surface charge density [1]. This surface charge is
the source of an electric field that acts on the ions in the surrounding solution to create
a polarized ion plasma. The combination of the adsorbed charges on the crystal and
the displaced ions in the solution phase is termed a double layer. The free energy of
the surface plus the double layer contains contributions from: (a) the crystal surface
entropy associated with the mixing of empty sites with occupied sites containing
adsorbed ions [2], (b) the electrostatic energy stored in the polarized ion plasma [2,3],
and (c) the change in aqueous solution entropy caused by the demixing of ions of
opposite sign under the action of the electric field [3].

The interfacial tension, γ (σ ), of a surface with charge density, σ , in contact with
an electrolyte solution can be calculated by evaluating the formula [2–4],

γ (σ ) = γ0 + �SkBT ln(1 − θ(σ )) −
φ∫

0

σ(φ′)dφ′ (1)

In Eq. 1, γ0 is the interfacial tension of the uncharged surface, φ is the electrostatic
potential of the charged surface, �S is the total density of ion adsorbing sites on the
uncharged surface, and θ(σ ) is the fraction of those sites ionized. The remaining
symbols are Boltzmann’s constant, kB, and the temperature, T .

The second term on the right-hand side of Eq. 1 represents the chemical free energy
associated with the mixing of empty and occupied adsorption sites on the crystal
surface. The third term includes the free energy stored in the plasma electric field, plus
the effect of the entropy change associated with the demixing of ions in the aqueous
phase [3]. The second and third terms can be omitted in the case of an uncharged surface
[4]. The second term can be omitted in the case of a charged surface when the chemical
potential of the ion species being exchanged between the solution and the surface is
identical to the chemical potential of this ion species in the bulk solid. Substances
satisfying this latter criterion include metals and sparingly soluble salts and metal
oxides [3]. The third term on the right-hand side of Eq. 1 is negative, as is the second
term, since θ(σ ) < 1. Hence, the net effect of the formation of the double layer is to
lower the interfacial tension of the charged surface below the value characteristic of the
uncharged surface. The reduced interfacial tension will manifest itself in any surface
phenomenon in which a double layer is involved. Examples include static phenomena,
such as electrocapillarity [5], and dynamic phenomena, such as crystallization [5]. We
will consider one aspect of the latter.

From a theoretical point of view, the mechanism of crystallization of a solute from a
supersaturated solution is ordinarily divided into sequential stages [6]: (a) nucleation,
in which molecules aggregate to form embryos (or nuclei) either within the parent
phase or on the surface of a substrate, (b) growth, where mature nuclei evolve into
crystals that advance in size, and (c) coarsening, in which large crystals grow at the
expense of smaller crystals.
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Below, we shall examine, the role of reduced interfacial tension in the theory of
coarsening. We will find that the direct effect is to decrease the capillary length scale
that governs the time scale as well as the average particle size. We can expect, among
the observable consequences of reduced capillary length that the decay of the super-
saturation should be faster and the crystals should be smaller in size and greater in
number than would be the case in the absence of the double layer.

2 Theory

2.1 Role of Coarsening in the Crystallization Process

Although a separation of the mechanism of crystallization into sequential stages is
convenient from a theoretical point of view, the individual stages can be expected to
overlap to some degree in practice. Nuclei will continue to form while, more mature
crystals are already growing. Due to the relentless increase in the total mass of the
solid precipitate, however, the solute supersaturation in the solution phase will decay
monotonically. Since the solubility of a solid particle decreases as its size increases
[7], nuclei and small crystals will dissolve, when it happens that their individual
solubilities are above the ambient solute concentration. This will cause the nucleation
rate to subside and the phase transition to be taken over by the process of coarsening. In
the Ostwald ripening picture of coarsening, the larger crystals will grow at the expense
of the smaller crystals, and the total number of crystals will diminish. The process of
Ostwald ripening will terminate in principle with one crystal left in equilibrium with
the solution at a solute concentration equal to the bulk solubility of the solid [6].

2.2 Size Dependence of the Solubility of a Charged Colloidal Particle

In order to develop a quantitative picture of the effect of surface charge density on the
coarsening process, we shall begin by considering a particle of a solid with chemical
formula, (1)ν1(2)ν2 , that dissolves by electrolytic dissociation,

(1)ν1(2)ν2(s) → ν1(1)Z1(aq) + ν2(2)Z2(aq) (2)

In Eq. 2, (1)Z1(aq) is a cation with valence, Z1, and (2)Z2(aq) is an anion with
valence, Z2. The respective stoichiometric coefficients are ν1 and ν2. The solid phase
is denoted by s, while the aqueous phase is denoted by aq. The chemical potential,
µ(aq), of a dissociated molecule of this electrolyte is given by [8]

µ(aq) = µo(aq) + ωkBT ln(γ±Qm) (3)

where µo(aq) is the chemical potential evaluated in the solute standard state and
m is the number of moles of the electrolyte dissolved per kilogram of solvent. Both
ω = ν1+ν2 and Q = (ν

ν1
1 ν

ν2
2 )1/ω are pure numbers that involve only the stoichiometric

coefficients. The activity coefficients of the individual ion species, γi (i = 1, 2), have
been combined to define the geometric mean activity coefficient, γ± = (γ

ν1
1 γ

ν2
2 )1/ω.
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We shall assume that the solid phase, represented by the left-hand side of Eq. 2,
exists in the form of a colloidal particle of radius, a. In the Kelvin approximation, the
Gibbs free energy of the solid is then given by [9]

G(s) = nµo(s) + γ (a)A (4)

In Eq. 4, n is the number of molecules in the particle, µo(s) is the chemical potential
of a molecule in the bulk solid, A = 4πa2 is the surface area of the particle, and
γ (a) is the interfacial tension, which we assume is a function of the particle radius,
a. The chemical potential, µ(s), of a molecule in the particle, including the effects of
the surface, can be obtained by differentiating Eq. 4 with respect to n. If we introduce
the particle volume, V = (4π/3)a3, the molecular volume, v = dV/dn, and compute
da/dV = 1/4πa2, then the chemical potential, µ(s) = ∂G(s)/∂n, can be written as

µ(s) = µ0(s) + v

[
2γ (a)

a
+ dγ (a)

da

]
(5)

The requirement that the solute in the solution and the material in the precipitated
phase be in equilibrium is µ(aq) = µ(s). Using Eqs. 3 and 5, this criterion can be
expressed in the form,

µo(aq) + ωkBT ln(γ±Qm(a)) = µo(s) + v

[
2γ (a)

a
+ dγ (a)

da

]
(6)

In Eq. 6, we have recognized that the solubility of the particle, m(a), is a function of
the radius. If we can also assume that lim

a→∞(γ (a)/a) = lim
a→∞(dγ (a)/da) = 0, then in

the limit of large radius, Eq. 6 becomes

µo(aq) + ωkBT ln(γ±Qm(∞)) = µo(s) (7)

where m(∞) corresponds to the solubility of the bulk solid. The value of the geometric
mean activity coefficient, γ±, depends upon the ionic strength of the solution [8]. If
the ionic strength is sufficiently low as to make the value of γ± essentially unity, or
if the ionic strength has been fixed by addition of inert electrolyte in sufficient excess
to make γ± constant, then we can eliminate γ± by subtraction of Eq. 7 from Eq. 6 to
obtain

ωkBT ln

(
m(a)

m(∞)

)
= v

[
2γ (a)

a
+ dγ (a)

da

]
(8)

Equation 8 is a generalized Gibbs–Kelvin equation, which is also sometimes termed
a Gibbs–Freundlich equation [7], when it is used, as in this case, to describe the
equilibrium between a solid particle and a liquid.

By virtue of the ionization of surface sites or adsorption of ions from the solution,
a colloidal particle will develop an electrostatic potential, φ, and a surface charge
density, σ(φ). If the charge density distribution on the colloidal particle is spherically
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symmetric, then the form of σ(φ) can be derived from the electrostatic potential
function that satisfies the spherically symmetric Poisson–Boltzmann equation [10],

1

r

d2

dr2 (r
(r)) = −1

εεo

N∑
i=1

Zi eci exp(−Zi e
(r)/kBT ), r ≥ a (9)

In Eq. 9, 
(r) is the value of the potential exterior to the particle at a radial distance,
r , from its center, ε is the relative dielectric constant of the solution, εo is the dielectric
constant of free space, and e is the magnitude of the electron charge. In constructing the
sum on the right-hand side, it is assumed that the i-th of the N different ionic species
in the solution has volume concentration, ci . In the Debye–Hückel approximation,
where (Zi eφ/kBT ) << 1, Eq. 9 is satisfied by [10]


(r) = q

4πεεo(1 + κa)

exp(−κ(r − a))

r
(10)

where q = 4πa2σ is the total charge on the colloidal particle, and

κ2 = 2e2 I/εεokBT (11)

defines the Debye length, 1/κ . In Eq. 11, the ionic strength is

I = (1/2)

N∑
i=1

Z2
i ci (12)

If we equate the total charge outside the solid particle to −q, we find that the charge
density on the surface of the particle is given by

σ(φ) = εεo(1 + κa)φ/a (13)

where φ = 
(a) is the value of the electrostatic potential at the surface.
After substitution of Eq. 13 into Eq. 1, we obtain for the interfacial tension,

γ (a) = γ0 + �SkBT ln(1 − θ(σ )) − aσ 2

2εεo(1 + κa)
(14)

We note the fact that the functional form of γ (a) in Eq. 14 satisfies the limits,
lim

a→∞(γ (a)/a) = lim
a→∞(dγ (a)/da) = 0, which were used to derive Eqs. 7 and 8.

Upon substitution of Eq. 14 into Eq. 8, we obtain

ln

(
m(a)

m(∞)

)
= 2v

ωkBT a

[
γ0 + �SkBT ln(1 − θ(σ )) − aσ 2(3 + 2κa)

4εεo(1 + κa)2

]
(15)
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Equation 15 determines the size dependence of the solubility of a charged colloidal
particle that is in equilibrium with an electrolyte solution. As such, it can be used as
the basis for a theory of coarsening of crystal sizes by Ostwald ripening.

2.3 Capillary Length Scale

When �S = 0 and σ = 0, the right-hand side of Eq. 15 reduces to the form
ln(m(a)/m(∞)) = (α/a), in which α = 2vγ0/ωkBT is known as the capillary
length [11]. When �S �= 0 and σ �= 0, the electrostatic term in Eq. 15 becomes inde-
pendent of a when κa >> 1. In this limit, we can define the capillary length scale,

α = 2vγ ′
0

ωkBT
(16)

where

γ ′
0 = γ0 + �SkBT ln(1 − θ(σ )) − σ 2

2εεoκ
(17)

By virtue of the fact that the second and third terms on the right-hand side of Eq. 17
are both negative, γ ′

0 is less than γ0, and one may regard Eq. 16 as the definition of
a “reduced” capillary length, α. The asymptotic nature of Ostwald ripening theory
requires a >> α [6]. We will show that this restriction is ordinarily satisfied, if
κa >> 1.

2.4 Theory of Ostwald Ripening

When the solution phase is sufficiently dilute in solute, one can replace the time-
dependent molality, m(t), by the time-dependent volume concentration, c(t) =
ρm(t)/NA, where ρ is the mass density of the solution, and NA is the Avagadro
number. The supersaturation, �(t), that drives the coarsening process is then defined
by

�(t) = c(t) − c(∞)

c(∞)
(18)

Here c(∞) is the long-time value of the concentration, or what is the same thing, the
solubility of the bulk solid. The initial value of the supersaturation, �(0), is obtained
by substituting c(0) into Eq. 18. Following Marqusee and Ross [6], we define the
volume scale factor, K , as

K = 4πα3

3vc(∞)
(19)

At time t , we let the number of precipitate grains per unit volume be N (t), and the
average particle radius in the distribution of particle sizes be denoted by 〈a(t)〉.

In the theory of Ostwald ripening, one ordinarily distinguishes between two limiting
forms for the growth mechanism which are: (a) the rate of growth of a precipitate
particle is controlled by the rate of addition of solute molecules to the surface of the
particle (interface control) [12] and (b) the rate of growth of the particle is controlled
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by the rate of diffusion of solute through the bulk of the solution (diffusion control)
[13].

When the particle growth is under interface control, the time scale governing the
coarsening process is given by [6]

T ′ = α

kc(∞)
(20)

where k is the rate constant for addition of molecules to the surface of the particle.
In this case, the time-dependent functions governing the supersaturation, the particle
density, and the average particle radius are, respectively [6],

�(t) = (2T ′/t)1/2 ≈ (α/t)1/2 (21a)

N (t) = 2.96
�(0)

K

(
T ′

t

)3/2

≈ 1

(αt)3/2 (21b)

〈a(t)〉 = 0.629α

(
t

T ′

)1/2

≈ (αt)1/2 (21c)

On the basis of Eqs. 21, which apply in the case of interface control, we conclude that
for a fixed time, t , the supersaturation decays faster, and the crystals are smaller in
size and greater in number as the capillary length scale, α, decreases.

When the particle growth is under diffusion control, the time scale for the coarsening
process is given by [6]

T ′′ = α2

Dvc(∞)
(22)

where D is the solute diffusion coefficient. In this case, the time dependent functions
governing the supersaturation, the particle density, and the average particle radius are,
respectively [6],

�(t) = 1.31(T ′′/t)1/3 ≈ (α2/t)1/3 (23a)

N (t) = 1.99
�(0)

K

(
T ′′

t

)
≈ 1

αt
(23b)

〈a(t)〉 = 0.763α

(
t

T ′′

)1/3

≈ (αt)1/3 (23c)

On the basis of Eqs. 23, which apply in the case of diffusion control, we can conclude
that for a fixed time, t , the supersaturation decays faster, and the crystals are smaller
in size and greater in number as the capillary length scale, α, decreases. Thus, the
qualitative effect of the reduced capillary length is the same under diffusion control as
it is under interface control.
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3 Discussion and Conclusions

The Debye–Hückel approximation limits to a certain extent that the size of the elec-
trostatic term, σ 2/2εεoκ , in Eq. 17 that we can consider; nonetheless, it is still
possible within this approximation to assess the role of the double layer for some
representative crystals when they are suspended in 1–1 electrolytes. For a 1–1 elec-
trolyte (|Z1| = |Z2| = 1) at T = 298 K, the Debye–Hückel approximation requires
φ < kB T/e = 26 mV. In the case of water at this temperature, we can set ε = 78.54
and convert Eq. (11) to the numerical form,

κ = 3.29 × 109 m−1 · L1/2 · mol−1/2
√

I (mol · L−1) (24)

At an ionic strength, I = 0.05 M, we find on the basis of Eq. 24 that κ = 7.35 ×
108 m−1. For a particle of radius a = 100 nm, the product κa = 73.5. A surface
charge density of |σ | = 1 µC · cm−2 is typical of the crystals of many substances
[1,14]. With σ = 1 µC ·cm−2, a = 100 nm, and κ = 7.35×108 m−1, Eq. 13 predicts
φ = 19.3 mV, which is well within the Debye–Hückel limit. Under these conditions,
the electrostatic term in Eq. 17 is σ 2/2εεoκ = 0.1 mJ · m−2. For the purpose of
comparing theory with experiment, we now turn to specific examples, which include
silver iodide and various protein crystals.

The quintessential colloid forming inorganic substance is AgI [14]. Since the
solubility of AgI in water at 298 K is only 1.2 × 10−8 M [15], maintenance of an
ionic strength of I = 0.05 M depends upon the addition of inert electrolyte. Since AgI
is a salt, �S = 0, which means that the chemical term on the right-hand side of Eq.
17 can be ignored. When it comes to assigning a numerical value to γ0, however, we
are faced with the famously difficult problem of defining the interfacial tension of a
solid [16]. We observed that despite this ambiguity, interfacial tension values for the
lower molar mass silver halides have been estimated by fitting the measured growth
rates of their crystals to one or more crystal growth rate theories [17]. Although the
interfacial tension of AgI has yet to be evaluated in this way, we can on the basis of the
downward trend in interfacial tension, which occurs with increasing silver halide molar
mass, choose γ0 = 32.5 mJ·m−2 for AgI. By comparison, our estimate of 0.1 mJ·m−2

for the electrostatic term in Eq. 17 is less than 1% of γ0 = 32.5 mJ ·m−2. This leads us
to the conclusion that the capillary length scale for AgI is little affected by the presence
of the double layer. On the basis of the formula weight (234.77 g · mol−1) and crystal
density (5.67 g ·cm−3), the molecular volume for AgI is v = 6.88×10−23 cm3. Since
AgI is a 1–1 electrolyte, the sum of the stoichiometric coefficients is ω = 2. If we
ignore the chemical and electrostatic terms in Eq. 17, we can use these data and Eq. 16
to compute α = 0.5 nm. The restriction, a >> α, is thus well satisfied by a particle
with radius equal to 100 nm.

A surface charge densiy of σ = 1 µC · cm−2 is also typical of protein crystals
[18]. For the protein crystals, however, the reported interfacial tension values, which
depend upon the crystal facet, are two orders of magnitude smaller than our estimate
of the interfacial tension for AgI. Since the theory of Ostwald ripening assumes the
interfacial tension to be isotropic, we choose for each protein crystal one of the facets
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to be representative of the crystal as a whole. In order to make the most stringent
comparison between the electrostatic term in Eq. 17 and experiment, we have selected
the crystal facet with the largest value of the interfacial tension to serve as an upper
bound for the crystal. On this basis, we consider the interfacial tension to be equal to
0.2 mJ · m−2 for apoferitin [19], 0.32 mJ · m−2 for catalase [20], and 0.4 mJ · m−2 for
thaumatin [20]. Again assuming I = 0.05 M, the electrostatic term equals 0.1 mJ·m−2.
As this value is of the same order of magnitude as our upper bounds, the double layer
must play a substantial role in determining the interfacial tension of a protein crystal.

Moreover, because protein crystals are molecular solids where the exchangeable
ion species, presumably H+ [21], is bound to various Bronsted–Lowry acid/base sites
along the macromolecular chain, we cannot ignore the chemical contributions to the
interfacial tension. As there are as many as eight types of Bronsted–Lowry, acid/base
functional groups in most proteins [22], the single chemical term in Eq. 17 should
be replaced by a sum that includes terms representing the ionizations of the various
amino acid residues.

The combined effect in Eq. 17 of the chemical and electrostatic terms, which are
both negative, may be sufficient in the case of some proteins to nearly cancel the term,
γ0, that determines the interfacial tension of the uncharged surface. Near cancellation
would lead to a reduced value for the capillary length, which we suggest may explain
the fact that the supersaturation in a typical protein crystallization experiment requires
a few days to reach equilibrium [18,23], while the crystals that appear are ordinarily
less than 50µ m on a side [21,24].

Because of the mix of positive and negative terms on the right-hand side of Eq.
15, there may exist for certain conditions of supersaturation a value of the radius,
a = am, where ln(m(a)/m(∞)) assumes a minimum. Under these conditions, which
are currently under investigation, small crystals with radii a < am should grow,
while larger crystals with radii a > am should dissolve. Over time, both groups of
crystals should presumably approach some limiting radius determined by the value
of am. Finally, in order to relax the restriction placed on the theory by the Debye–
Hückel approximation, we note that the Poisson–Boltzmann equation can be solved
for larger values of the surface potential, φ, using one of the available numerical [25]
or approximate analytical [26] methods.
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